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1 Introduction

On-shell scattering amplitudes are perhaps the most basic quantities computed in any gauge

theory. A common feature of on-shell scattering amplitudes in massless gauge theories in

four dimensions is the presence of infra-red (IR) divergences, originating from low energy

virtual particles as well as from virtual momenta almost parallel to the external ones. In

order to define the amplitudes properly, an IR regulator should be introduced. A convenient

choice is the use of (a version of) dimensional regularization, in which we consider the theory

in D = 4 − 2ǫ dimensions. IR divergences, then, manifest themselves as poles of the form
1
ǫ . Such IR divergences have a structure that is captured by the soft/collinear factorization

theorem, see e.g. [1–3] , of the schematic form1

Adiv ≈ e
1

ǫ
2 f(λ)+ 1

ǫ
G(λ) (1.1)

where f(λ) is the so called cusp anomalous dimension [4–7] and G(λ) is the so called

collinear anomalous dimension. The cusp anomalous dimension appears in several other

computations. In particular, it controls the anomalous dimension of twist two operators,

of the form TrφDSφ, in the large spin limit [8, 9], namely

∆ − S = f(λ) log S − B(λ) + . . . (1.2)

1When writing this expression we have in mind conformal theories. Furthermore, strictly speaking, the

functions that appear in this expression are f−2(λ) and g−1(λ), with some extra proportionality factors.

– 1 –



J
H
E
P
0
7
(
2
0
0
9
)
0
4
7

The cusp anomalous dimension is a very well known quantity. On the other hand, much

less is known about the ”subleading” quantities G(λ) and B(λ). In particular, they are

not universal, in the sense that they depend on the kind of particles under consideration.

Recently, Dixon, Magnea and Sterman (DMS), based on previous hints from [10–14] , put

forward an interesting proposal [15] , according to which the difference G(λ) − 2B(λ) is a

universal quantity and can be obtained from a eikonal contribution2 Geik to the collinear

anomalous dimension ( plus a term proportional to the beta function that will vanish for

the case considered in this note).

An interesting theory in which this set of ideas can be tested is maximally super-

symmetric Yang-Mills (MSYM). Due to its high degree of symmetries, this theory is much

simpler to study perturbatively than, for instance, QCD. On the other hand, the strong

coupling limit of the theory can be studied by means of the AdS/CFT duality [16] , by

studying a weakly coupled sigma model.

The aim of this note is to study the universality proposed in [15] at strong coupling

for the case of MSYM. In the first half of the note we review the relation at weak coupling.

It turns out that at two loops the above mentioned eikonal contribution can be extracted

from the expectation value of a ”rectangular” light-like Wilson loop. In the second half

of the note, the relation is studied at strong coupling, where universality is also observed.

Furthermore, we will see that the eikonal contribution can be again extracted from the

expectation value of the rectangular light-like Wilson loop. Since the computation of G at

strong coupling is also formally equivalent to a Wilson loop computation [17, 18], naively

one would say that G and Geik coincide at strong coupling. However, Geik should be

computed in the original AdS background as opposed to the T−dual AdS background.

While the ”unregularized” spaces are equivalent, they differ when we use dimensional

regularization and according to the DMS relation, Bδ measures this difference. Finally we

end up with some conclusions. The relevant computations at strong coupling are deferred

to the appendices.

2 Dixon-Magnea-Sterman relation at weak coupling

Dixon, Magnea and Sterman studied in [15] the subleading soft and collinear poles of form

factors and amplitudes in dimensionally-regulated massless gauge theories. This poles

are characterized by a function G(αs), which in general depends on both, the spin and

gauge quantum numbers of the particles under consideration. For the case of conformal

theories, DMS wrote this function as the sum of two contributions: a universal eikonal

anomalous dimension3 Geik(αs) and a non eikonal contribution Bδ(αs), given by the virtual

contribution to the Altarelli-Parisi splitting kernel. The proposed relation for the particular

case of N = 4 SYM reads4

G(αs) = Geik(αs) + 2Bδ(αs) (2.1)

2In the eikonal approximation hard partonic lines are replaced by Wilson lines.
3More precisely, Geik carries no information about the spin of the parton, only is representation under

the gauge group.
4A similar relation, apparently different at two loops, appeared in [8] , eq. (33).

– 2 –



J
H
E
P
0
7
(
2
0
0
9
)
0
4
7

In the following we study in detail each of these terms at the perturbative level and work

out some examples of the above relation

2.1 G(αs)

G(αs) is given by the subleading IR pole in the Sudakov form factor. The perturbative

result for the case of gluons, up to three loops, has been presented in [11] , eq. (18). Accord-

ing to the maximally transcendentality principle [19] , we expect the leading transcendental

piece to correspond to the MSYM result

G(2)
g = −4C2

Aζ3, G(3)
g = 8C3

A

(

10

3
ζ2ζ3 + 4ζ5

)

(2.2)

from now on CA,F denote the Casimirs of the adjoint/fundamental representation. For

most of the discussion in theses notes, we will restrict ourselves to the planar limit, where

CA = 2CF = N . The loop quantities defined above are the coefficient of
(

αs

4π

)L
. On the

other hand, the coupling a used in [20] is a = αsN
2π . After taking this into account we find

perfect agreement between G used here and what was called Ĝ0 in [20].

The quark form factors can be found in eq. (3.10) of [21]. Extracting the pieces with

leading transcendentality we obtain

G(2)
q = 48C2

F ζ3 − 52CF CAζ3

G(3)
q = −32C3

F (2ζ2ζ3 + 15ζ5) + 16C2
F CA(2ζ2ζ3 + 15ζ5)

+CF C2
A

(

176

3
ζ2ζ3 + 272ζ5

)

(2.3)

2.2 Bδ(αs)

In eq. (2.1) , Bδ(αs) is the coefficient of δ(1 − x) in the Altarelli-Parisi diagonal splitting

function.

Pii(x) =
γ

[i]
K (αs)

2

[

1

1 − x

]

+

+ B
[i]
δ (αs)δ(x − 1) + . . . (2.4)

Which is related to the large spin behavior of twist two operators, see for instance [20]

γ(S) =
1

2
γk(αs)(ln S + γe) − B(αs) + . . . (2.5)

At two and three loops, Pqq and Pgg, where g denotes a gluon and q a quark, have been

computed in [22] and [23]. We can extract the higher transcendentality terms proportional

to δ(1 − x)

B(2)
gg = 12C2

Aζ3, B(3)
gg = −16C3

A(ζ2ζ3 + 5ζ5)

B(2)
qq = −12CACF ζ3 + 24C2

F ζ3, B(3)
qq = 16CAC2

F

(

ζ2ζ3 +
15

2
ζ5

)

+ 40C2
ACF ζ5 − 16C3

F (2ζ2ζ3 + 15ζ5) (2.6)

– 3 –
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2.3 Universal quantity Geik(αs)

From the above two and three loops results we can consider the difference G − 2B for the

different cases

G(2)
g − 2B(2)

gg = −28C2
Aζ3, G(2)

q − 2B(2)
qq = −28CACF ζ3G

(3)
g − 2

B(3)
gg =

8

9
C3

A(11π2ζ3 + 216ζ5), G(3)
q − 2B(3)

qq =
8

9
C2

ACF (11π2ζ3 + 216ζ5)

(2.7)

In agreement with the claim of [15] , G−2B is a universal quantity, up to a factor depending

on the color representation (in this case CA vs. CF ). This difference is exactly what was

called f5 in [11] and, as already noted there, is a universal quantity.

The following remark will be important for what will be discussed in these notes.

According to [15] , the eikonal contribution Geik is related to the function responsible for

soft single logarithms in threshold resummation for the Drell-Yan process. Indeed, it can

be extracted, at two loops, from the Drell-Yan anomalous dimension computed in [24].

On the other hand, as also mentioned in [15] , note that at two loops, G
(2)
eik = −28C2

Aζ3,

coincides with the two loops subleading pole of the expectation value of the rectangular

light-like Wilson loop considered in [25] and [26]. In particular, Geik (which was called

Γ(a) in [26]) can be extracted from the renormalization group equation for the expectation

value of such Wilson loop, of the form

∂ log〈W 〉
∂ log µ2

= −f(a)

2
log x2

13x
2
24µ

4 − Geik(a) − 1

ǫ

∫ a

0

da′

a′
f(a′) + O(ǫ) (2.8)

where f(a) is the cusp anomalous dimension and the x′
is denote the position of the cusps.

From eq. (30) of [26] we get the desired result (after taking into account the difference of

conventions). In the next section we will assume that Geik can be extracted from the same

computation at strong coupling and we will see that indeed the DMS relation continues

to hold.

The connection between the Drell-Yan and rectangular light-like Wilson loop computa-

tions can probably be understood as a consequence of conformal invariance. The Drell-Yan

computation corresponds to two single cusp Wilson loops, whose cusps are separated by a

time-like distance [27]. It can be seen, e.g. in [28] , that there exist conformal transforma-

tions taking the rectangular Wilson loop world-sheet to the kind of world-sheets relevant

to Drell-Yan processes. Such world-sheets, however, are hard to analyze, since the radial

coordinate is in general complex and they do not seem to be Euclidean everywhere.

3 Connection to strong coupling

If the relation (2.1) is to hold to all orders in perturbation theory, one may expect that

there is some way to check it at strong coupling, by using the AdS/CFT duality. Provided

we make the assumption that Geik can be extracted from the rectangular light-like Wilson

5Not to be confused with the cusp anomalous dimension.
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loop, all the ingredients in this relation can be easily computed (or have been already

computed!) at strong coupling, as shown in appendix A.

Scattering amplitudes of MSYM can be computed at strong coupling by using the

AdS/CFT duality [17]. Very much as in the gauge theory, a regulator needs to be in-

troduced in order to define the amplitudes properly. In [17] the analogous of dimensional

regularization was used, which allowed to compute the strong coupling limit of the func-

tions characterizing the IR poles of the amplitudes. The collinear anomalous dimension G

was computed at strong coupling for gluons in [17] and quarks in [29, 30].

Ggluon =

√
λ

2π
(1 − log 2)

Gquark =

√
λ

4π
(1 − 3 log 2) (3.1)

We have divided by 2 what was called gquark in [29] , since this is the quantity that enters

in the form factor.

The function B at strong coupling can be computed by considering classical strings

spinning on AdS. According to the dictionary of the AdS/CFT correspondence, such

strings states corresponds to twist two operators with high spin [31] and the energy of

the former is related to the anomalous dimension of the later. A detailed computation is

shown in the appendix, the final result for gluons and quarks is6

Bgg =

√
λ

2π

(

ln

(

√
λ

2π

)

+ 1 − 2 log 2 + γe

)

Bqq =

√
λ

4π

(

ln

(

√
λ

2π

)

+ 1 − 3 log 2 + γe

)

(3.2)

In order to extract the functions B from the computation in the appendix one needs to

use the precise relation (2.5). On the other hand, as explained in appendix B, one needs

to divide by an extra factor of 2, coming from the use of different conventions in the

computations at weak and strong coupling.

From this results we see that GR − 2BR = fRX, with X some universal function and

fR a factor that depends on the representation (e.g. fR=q = 1 for quarks and fR=g = 2 for

gluons). For instance, focusing on the case of the gluons we obtain

Ggluon − 2Bgg =

√
λ

2π
(−1 − 2γe + 5 log 2 + 2 log π − log λ) (3.3)

This difference should be then compared to Geik at strong coupling, extracted from the

rectangular Wilson loop computation done in the appendix

Geik =

√
λ

2π
(−1 − 2γe + 5 log 2 + 2 log π − log λ) (3.4)

Hence we see that the DMS relation holds at strong coupling. Several comments are in

order. First, note that the strong coupling computations giving G and Geik are very similar,

6Quarks, transforming in the fundamental representation, can be considered in N = 4 SYM by adding

a flavor symmetry.
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with the difference that G is computed in the dual coordinates and Geik is computed in

the original coordinates, since the former comes from a scattering computation while the

later comes from a Wilson loops computation. The two computations are naively the same,

however dimensional regularization acts on a different way. We could interpret the DMS

relation as telling us what the difference G−Geik should be. Second, note that the precise

matching depends on several factors having to do with conventions, etc, and as such is

not very robust. On the other hand, the matching of the term −1 − log λ is more neat

and still non trivial. Finally, we have assumed that it is possible to extract Geik from the

rectangular Wilson loop computation, which is true at two loops and, according to the

results of this note, also at strong coupling.

Irrespective of the strong coupling result for Geik, a universality for the combination

G− 2B is observed at strong coupling. This universality seems to persist even when using

other schemes, such as the radial cut-off introduced in [32]. Furthermore, note that most

of our strong coupling computations are not restricted to four dimensions , so universality

can extend to other dimensions as well. It would be interesting to study these issues in

more detail.

4 Conclusions

In this note we have tested the universality relation (2.1) , between the subleading pieces

of several computations, at strong coupling, by using the AdS/CFT duality. One can

explicitly compute Bδ(λ) and G(λ) at strong coupling for quarks and gluons and check

that indeed universality holds (up to a factor of two, which exactly coincides with the ratio

CA/CF in the planar limit)

Besides, we have assumed that Geik can be extracted from the dimensionally-

regularized rectangular light-like Wilson loop. One can explicitly check that this is the

case at two loops and the results of this note imply that this is the case at strong coupling

too. This way of computing Geik does not follow immediately from the definition of [15].

According to [15] , Geik can be extracted from the Drell-Yan anomalous dimension, com-

puted for instance at two loops in [24]. The equivalence of both computations is possibly

a consequence of conformal symmetry, however we have not proven this statement.

The computation presented here is a non trivial check of the relation (2.1) and hopefully

it will help in order to shed some light in the understanding of collinear anomalous dimen-

sions in scattering amplitudes of massless gauge theories. Note that in particular, (2.1)

implies that the difference G − Geik can be written in terms of the anomalous dimension

of an operator. Actually, an integral equation can be written for Bδ,
7 which allows to

compute it for any value of the coupling constant [33, 34].

Since the relation (2.1) is expected to be true for any value of the coupling constant,

one may expect that it is a consequence of symmetries and maybe can be proven along the

lines of [35]. Furthermore, if such relation is a consequence of symmetries, a version of it

may hold beyond the case of dimensionally regulated four dimensional theories.

7At least without taking into account wrapping effects. Whether such effects arise is not clear.
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A Strong coupling coumputations of Bδ and Geik

A.1 Bδ at strong coupling

The anomalous dimension of high spin operators at strong coupling can be studied by

considering classical spinning strings, as in [31] , to which we refer the reader for the details

of the following computation.

We would like to compute the constant b(λ) in the large spin expansion of the anoma-

lous dimension

∆ − S = f(λ) log S + b(λ) + O(log S/S) (A.1)

In formulas (17) and (18) of [31] an expression for the energy and the spin is given in terms

of a parameter ρ0, and in particular

∆ − S = 2
R2

πα′

∫ ρ0

0
dρ

sinh ρ0 − e−ρ0 sinh2 ρ
√

sinh2 ρ0 − sinh2 ρ
≡ 2

R2

πα′
I,

R2

α′
=

√
λ (A.2)

We also see from their formulas (29) and (31) that

S =
R2

2πα′
e2ρ0 + . . . → 2ρ0 = log S − log

(

R2

2πα′

)

+ . . . (A.3)

We now evaluate the integral in (A.2) which we write as

I = ρ0 +

∫ ρ0

0
dρ

sinh ρ0 −
√

sinh2 ρ0 − sinh2 ρ − e−ρ0 sinh2 ρ
√

sinh2 ρ0 − sinh2 ρ
(A.4)

Now we take the ρ0 → ∞ in this last integral. Naively we would say that the result is zero.

On the other hand, there is an end point contribution near ρ ∼ ρ0 which can be computed

as follows

∫ ρ0

0
dρ

sinh ρ0 −
√

sinh2 ρ0 − sinh2 ρ − e−ρ0 sinh2 ρ
√

sinh2 ρ0 − sinh2 ρ
→

→
∫ 0

−∞

dx
1 −

√
1 − e2x − 1

2e2x

√
1 − e2x

= −1/2 + log 2 (A.5)

where x = ρ − ρ0. Putting these results together we find that

∆ − S =

√
λ

π
[2ρ0 + (−1 + 2 log 2)] (A.6)

– 7 –
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Then we get our final result

b =

√
λ

π

[

− log

(

√
λ

2π

)

+ (−1 + 2 log 2)

]

(A.7)

This agrees exactly with the result obtained for instance in [36]. From this result, we can

easily extract the strong coupling limit of Bgg(λ).

The same computation can be easily repeated for an open string, which is related to

an operator of the form q̄DSq. The energy and spin are given by the same integrals as

before except that we divide the right hand sides by a factor of two. Thus, as a function

of ρ0, ∆ − S is half of what it was before. Thus we find

∆ − S|q̄q =

√
λ

2π
[2ρ0 + (−1 + 2 log 2)]

=
f

2
log S +

bq̄q

2

bq̄q =

√
λ

π

[

− log

(

√
λ

2π

)

+ (−1 + 2 log 2) + log 2

]

=

√
λ

π

[

− log

(

√
λ

2π

)

− 1 + 3 log 2

]

(A.8)

The extra log 2 comes from the fact that now

S =
1

2

R2

2πα′
e2ρ0 (A.9)

instead of the equation (A.9). From this computation we can extract the strong coupling

limit of what we would like to call Bqq̄(λ). As a final remark, note that the way Bqq is

computed from the corresponding computation for gluons (diving by two in the right places)

is very much the same as the way gquark was computed from the corresponding computation

for gluons in [29]. This is part of the reason for universality at strong coupling.

A.2 Geik at strong coupling

According to the discussion in the body of these notes, the universal factor Geik should be

given by the collinear anomalous piece of the rectangular Wilson loop. Note that since we

are computing a Wilson loop expectation value, we have to use the original coordinates (as

opposed to the T-dual coordinates). The dimensional regularized metric is

ds2 = f−1/2dx2
D + f1/2[dr2 + r2dΩ2

9−D] , D = 4 − 2ǫ

f =
cDλ

r8−D
, cD = 24ǫπ3ǫΓ(2 + ǫ)

µ2ǫ

(4πe−γ)ǫ
(A.10)

We can compute the Nambu-Goto action in the usual way. The Log of the Wilson loop at

strong coupling will then be directly related to the Nambu-Goto area. Let us first discuss

the single cusp solution, which can be embedded into AdS3

A =
1

2π

∫

√

(∂xr)2 − (∂tr)2 −
1

f
(A.11)

– 8 –
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The solution corresponding to the single cusp can be found for arbitrary values of ǫ.

r(x, t) =
k1

(t2 − x2)k2
, k1 =

(

2 + 3ǫ + ǫ2

cDλ

)

−1

2+2ǫ

, k2 =
1

2 + 2ǫ
(A.12)

Note that the square root behavior of the t2 − x2 dependence is modified by ǫ. Also, note

that the boundary is located at r = ∞. Next, we focus on the four edges solution. It is

convenient to embed the surface in Poincare coordinates (r, t, x1, x2) and parametrize the

world-sheet by its projection to the (x1, x2) plane.

A =
1

2π

∫

1√
cDλ

√

cDλ((∂ir)2 − (∂1t∂2r − ∂1r∂2t)2) − r4+2ǫ(−1 + (∂it)2) (A.13)

Choosing an approximate solution with the correct behavior close to the cusps (and solving

the equations of motion for ǫ = 0) we obtain

r(x1, x2) = k0

(

cDλ

(1 − x2
1)(1 − x2

2)

)
1

2+2ǫ

, t(x1, x2) = x1x2, k0 = 1 + O(ǫ) (A.14)

subleading terms in k0 will drop out from our final result. Plugging this solution into the

Nambu-Goto action and using the evolution equation we obtain

∂A

∂ log µ2
=

√
λ

πǫ
+

√
λ

log 8µ2 − 1 + log 8 + 2 log π − log λ

2π
+ O(ǫ) (A.15)

Note that the presence of the factor log λ is a direct consequence of the fact that the

solution (A.14) depends explicitly on λ and this dependence is modified by the presence of ǫ.

This is a very important difference between original and T−dual variables.The expectation

value of light-like Wilson loops is ultra-violet (UV) divergent and as such the scale µ

appearing in (A.15) is a UV scale. One can see from [37] , eqs. (15) and (44) that the UV

and IR cut-offs are of the form µ2
IR = 4πe−γe µ̃2 and µ−2

UV = πeγe µ̃2, hence µ2
IRµ2

UV = 4e−2γe .

When comparing Geik to IR divergent quantities (such as scattering amplitudes), we need

to rewrite µUV in terms of µIR. This results in a extra shift for Geik, the final result being

Geik =

√
λ

2π
(−1 − 2γe + 2 log π + 5 log 2 − log λ) (A.16)

Note that we have used the fact that x2
i,i+2 = 8 for the rectangular Wilson loop

under consideration.

B Understanding the factor of two

The factor of two in the definition of B between weak and strong coupling computations has

a simple explanation due to the use of different conventions. It is instructive to look at the

paper [38]. There, the authors compute the anomalous dimension of twist two operators

in N = 4 SYM up to terms of order (log S)0. They write their result as follows

γ(S) = âγ
(0)
uni + â2γ

(1)
uni + â3γ

(2)
uni + . . . , â =

αNc

4π
(B.1)

– 9 –
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The large S expansions of the above terms are also given in that paper, eqs. (26)–(28)

γ
(0)
uni(S) = −4(ln S + γe) + 0 + . . .

γ
(1)
uni(S) = 8ζ2(ln S + γe) + 12ζ3 + . . .

γ
(2)
uni(S) = −88ζ4(ln S + γe) − 16ζ2ζ3 − 80ζ5 + . . . (B.2)

As the authors of [38] mention, there is a difference of a factor of −1/2 between their

conventions and the conventions of Gubser-Klebanov-Polyakov (GKP) when they compute

the cusp anomalous dimension [31]. We are also using GKP conventions, since we use

their calculation in order to compute the B term at strong coupling. More precisely,

γLIP = −1/2γGKP. Hence, if we translate what we called B at weak coupling to the GKP

conventions, we obtain

Bgg = 24ζ3g
4 − 32(ζ2ζ3 + 5ζ5)g

6 + . . . (B.3)

where g2 = â = αNc

4π . Comparing this with (2.6) , we see that we get exactly twice the

result. Hence, we need to divide by two the strong coupling result in order to adjust to the

conventions usually used in perturbative computations and in particular used by Dixon,

Magnea and Sterman in [15].
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